半导体设备装卸搬运气垫车运输
2021-08-29 来自: 亚瑟半导体设备安装(上海)有限公司 浏览次数:485
半导体设备装卸搬运气垫车运输的亚瑟报道:近些年,精密设备搬运下游行业应用对半导体材料性能要求不断提高,在射频(RF)和功率电子方面,氮化镓(GaN)芯片在消费电子领域渗透率不断提升,市场在高速增长。精密设备搬运预计,2021年,GaN功率器件市场规模将达到6100万美元,年增长率达到90.6%,年增长率有望在2022年达到高峰,后续随着厂商采用逐渐普及,增长态势将趋缓。
精密设备搬运作为第三代化合物半导体的代表,GaN具有诸多优点,如高熔点、出色的击穿能力、更高的电子密度和电子速度,以及更高的工作温度,且GaN的能隙很宽,达到3.4eV,具有低导通损耗和高电流密度。精密设备搬运GaN主要用于微波射频和功率电子领域。
精密设备搬运在射频市场更关注高功率、高频率场景。由于GaN在高频下具有较高的功率输出和较小的面积,已被射频行业广泛采用。随着5G到来,GaN在Sub-6GHz宏基站和毫米波(24GHz 以上)小基站中找到了用武之地。2020年,疫情对市场产生了短暂影响,意法半导体(ST Microelectronics)和英飞凌(Infineon)等欧洲巨头曾短暂减产。预计在预测期内,GaN在5G基站制造中的采用将越来越多,将带动市场增长。精密设备搬运在射频应用中,PA是GaN的主战场。5G对于设备性能和功率效率提出了更高的要求,特别是在基站端,基站数量和单个基站成本双双上涨,这将会带来市场空间的巨大增长。依据蜂窝通信理论计算,要达到相同的覆盖率,估计中国5G宏基站数量要达到约500万个。2021年5G宏基站PA和滤波器市场将达到243.1亿元人民币,年均复合增长率CAGR为162.31%,2021年4G和5G小基站射频器件市场将达到21.54亿元人民币,CAGR为140.61%。精密设备搬运由于基站越来越多地用到了多天线MIMO技术,这对PA提出了更多需求。预计到2022年,4G/ 5G基础用的射频半导体市场规模将达到16亿美元,其中,MIMO PA的年复合增长率将达到135%,射频前端模块的年复合增长率将达到 119%。精密设备搬运相对于4G,5G基站用到的PA数会加倍增长。4G基站采用4T4R方案,按照三个扇区,对应的射频PA需求量为12个,5G基站中,预计64T64R将成为主流方案,对应的PA需求量高达192个。精密设备搬运目前的PA市场,包括基站和手机端用的,制造工艺主要包括传统的LDMOS、GaAs,以及新兴的GaN。而在基站端,传统LDMOS工艺用的更多,但是,LDMOS 技术适用于低频段,在高频应用领域存在局限性。而为了适应5G网络对性能和功率效率的需求,越来越多地应用到了GaN,它能较好地适用于大规模MIMO。精密设备搬运具有优异的高功率密度和高频特性。GaAs拥有微波频率和5V至7V的工作电压,多年来一直广泛应用于PA。硅基LDMOS技术的工作电压为28V,已经在电信领域使用了许多年,但其主要在4GHz以下频率发挥作用,在宽带应用中的使用并不广泛。相比之下,GaN的工作电压为28V至50V,具有更高的功率密度和截止频率,在MIMO应用中,可实现高整合性解决方案。精密设备搬运在宏基站PA应用中,GaN凭借高频、高输出功率的优势,正在逐渐取代LDMOS;在小基站中,未来一段时间内仍然以GaAs工艺为主,这是因为它具备可靠性和高精密设备搬运优势,但随着GaN器件成本的降低和技术的提高,GaN PA有望在小基站应用中逐步拓展。精密设备搬运在手机端,射频前端PA还是以GaAs工艺为主,短期内还看不到GaN的机会,主要原因是成本和高电压特性,这在手机内难以接受。精密设备搬运功率电子方面,用GaN制造电源转换器,是当下部分是取得碳化硅的基板,一片6英寸的晶圆,要价高达8万元台币。精密设备搬运近几年,市场上开始出现将GaN堆栈在硅基板上的技术(GaN on Si)。这种技术大幅降低了化合物半导体的成本,用在生产处理数百伏特的电压转换,可以做到又小又省电。目前,市面上已经可以看到,原本便当大小的笔电电源适配器,已经能做到只有饼干大小,OPPO、联想等公司,更要把这种技术内建在手机和笔电里。野村证券发表的题为“A GaN Changer”的产业报告,认为未来2~3年,第三代半导体将重塑消费类电源市场,取代用硅制作的IGBT电源管理芯片。野村证券报告预估,2023年,这个市场产值每年将以6成以上速度增长。第三代半导体能源转换效率能达到95%以上,一旦被大幅采用,能实现很好的节能效果。精密设备搬运在功率电子方面,GaN的应用也在不断创新,例如,意法半导体(ST)正在开发一种将其BCD硅技术中内置的微控制器与GaN器件相结合的工艺,以实现智能电源。
据悉,这是建立在Bipolar-CMOS-DMOS(BCD)技术基础上的。BCD的开发始于35年前,它在4英寸晶圆上以4微米工艺结合了模拟,逻辑,存储器和功率组件。不久后,其第10代技术将开始以90nm工艺生产,这将导致40nm工艺与高度集成的微控制器一起用于有线和无线充电设备以及许多其他电源应用。GaN外延片主要有两种衬底技术,分别是GaN on Si(硅基氮化镓)和GaN on SiC(碳化硅基氮化镓)。当然,除了以上这两种主流技术外,还有GaN on sapphire,以及GaN on GaN技术。目前,GaN on Si应用较多。
精密设备搬运虽然GaN on SiC性能相对较佳,但价格明显高于GaN on Si。另外,GaN on Si生长速度较快,也较容易扩展到8英寸晶圆。虽然GaN on Si性能略逊于GaN on SiC,但目前工艺水平制造的器件已能达到 LDMOS 原始功率密度的5-8 倍,在高于2GHz的频率工作时,成本与同等性能的LDMOS 出入不大。另外,硅基技术也将对CMOS工艺兼容,使GaN器件与CMOS工艺器件集成在一块芯片上。这些使得GaN on Si成为市场主流,而且主要应用于电力电子领域,未来有望大量导入5G基站的功率放大器 (PA)。精密设备搬运GaN on SiC则结合了SiC优异的导热性和GaN的高功率密度和低损耗的能力,与Si相比,SiC是一种非常“耗散”的衬底,此基板是射频应用的合适材料。在相同的耗散条件下,SiC器件的可靠性和使用寿命。但是,受限于SiC衬底,目前仍然限制在4英寸与6英寸晶圆,8英寸的还没有推广。精密设备搬运射频应用方面,Cree(Wolfspeed)拥有实力,在射频应用的 GaN HEMT 专利竞争中,尤其在GaN on SiC技术方面,该公司处于其主要竞争对手住友电工和富士通。英特尔和MACOM是目前活跃的射频GaN专利申请者,主要聚焦在GaN on Si技术领域。GaN射频HEMT相关专利领域的新进入者主要是中国厂商,如HiWafer(海威华芯)、三安上的器件可以在高电压和高漏极电流下运行,结温将随射频功率而缓慢升高,因此射频性能集成和华进创威。